Simply enabling Windows Sandbox

This blog post uses Containers-DisposableClientVM, to enable the Windows Sandbox feature on Windows 10 devices. This is available in Windows 10 Insider build 18305 or later.

This week is all about enabling a recently introduced Windows Feature. That Windows Feature is Windows Sandbox. Windows Sandbox is a lightweight desktop environment that is specifically created for safely running applications in isolation. It provides an isolated, temporary, desktop environment where users can run untrusted software without the fear of lasting impact to their device. Any software installed in Windows Sandbox stays in the sandbox and cannot affect the host. The installed software is permanently deleted, once Windows Sandbox is closed. Windows Sandbox is part of Windows 10 (Pro and Enterprise) Insider build 18305 or later. In this post I’ll show how to use Microsoft Intune to enable Windows Sandbox, followed by the end result.

Script

Let’s start  by looking at the PowerShell script that can be used to enable the Windows Sandbox feature. The following PowerShell script can be used to basically enable any Windows Feature, but will be used in this post to specifically install the Windows Sandbox feature.

Note: When using a virtual machine, nested virtualization must be enabled for that virtual machine. That can be achieved by using the following PowerShell cmdlet on the host machine: Set-VMProcessor -VMName <VMName> -ExposeVirtualizationExtensions $true.

Configuration

The next step is to configure the PowerShell script in Microsoft Intune. The script must run in SYSTEM context to easily install new Windows Features. To upload the script, follow the five steps below. After uploading the script, simply assign the script to the required devices. I deliberately mentioned devices, as I’m using a security group that filters on the version of Windows 10. The good thing is that nowadays these scripts can be assigned to devices and that users are not required to be logged on first.

1 Open the Azure portal and navigate to Intune > Device configuration > PowerShell scripts;
2 On the Device configuration – PowerShell scripts blade, click Add script to open the Script Settings blade;
3a EWS-AddPowerShellScriptOn the Add PowerShell script blade, provide the following information and click Settings to open the Script Settings blade;

  • Name: Provide a valid name for the PowerShell script;
  • Description: (Optional) Provide a description for the PowerShell script;
  • Script location: Browse to the created PowerShell script;
  • Settings: See step 3b;

Note: The script must be less than 200 KB (ASCII) or 100 KB (Unicode).

3b EWS-ScriptSettingsOn the Script Settings blade, provide the following configuration and click OK to return to the PowerShell script blade;

  • Run the script using the logged on credentials: No;
  • Enforce script signature check: No;
4 Back on the Add PowerShell script blade, click Create.

End result

Now let’s end this post by looking at the results. To verify a success, simply start Windows Sandbox. That Windows Feature should be available now. To verify a success from a Microsoft Intune perspective, either check the status of the PowerShell script in the Azure portal , or look at the AgentExecutor.log and IntuneManagementExtension.log on the device.

EWS-Example

Note: By using PowerShell, at this moment, Windows Sandbox can also be enabled on not supported devices (devices without virtualization capabilities), .

More information

For more information regarding Windows Sandbox and PowerShell scripts in Microsoft Intune, please refer to the following articles:

Easily controlling the Office update channel by using administrative templates

Let’s start this new year about a specific use case for the recently introduced feature to configure administrative template settings via Microsoft Intune. That specific use case is to easily control and configure the Office update channel by using the Administrative Templates profile type within Microsoft Intune. Before, this configuration would require ingesting a custom ADMX and creating custom OMA-URI settings, for configuring the Office channel, based on the information in the ingested custom ADMX. That’s not necessary anymore, as Microsoft Intune now provides a built-in list of available administrative template policy settings. In this post I’ll show the configuration steps, followed by the configuration results on a Windows 10 device.

Configuration

Before looking at the actual configuration steps, it might be good to first refresh memories by looking at the naming of the update channels in the different locations. The following table shows the naming of the different channels in Microsoft Intune (and the Office apps) and in the actual ADMX. Good news! This is actually the last time that it’s really required to look at this information. As this post will show, it wasn’t even necessary for the configuration in this post. It will be useful for verifying the results. Microsoft Intune will now provide an easy method for configuring many ADMX-backed settings, without going through the actual ADMX anymore.

Azure portal ADMX setting
Monthly Channel FirstReleaseCurrent
Monthly Channel (Targeted) Current
Semi-Annual Channel Deferred
Semi-Annual Channel (Targeted) FirstReleaseDeferred
Insider Fast InsiderFast

When this would be a configuration of an ADMX-backed settings, the information in the table above would be really relevant during the configuration. Since recently Microsoft Intune contains a new profile type, named Administrative Templates. These profiles take care of the heavy work. In case of Office settings, which will be used in this post, these profiles even take care of ingesting the correct ADMX-files. The following six steps walk through the creation of an Administrative Templates profile type that will be used to configure the Office update channel. After the creation of the policies it can be assigned to a user and/or device group.

1 Open the Azure portal and navigate to Microsoft Intune > Device configuration > Profiles to open the Device configuration – Profiles blade;
2 On the Device configuration – Profiles blade, select Create profile to open the Create profile blade;
3

OfficeUpdates-CreateProfileOn the Create profile blade, provide the following information and click Create to open the <Name> blade;

  • Name: Provide a unique name for the device configuration profile;
  • Description: (Optional) Provide a description for the device configuration profile;
  • Platform: Select Windows 10 and later;
  • Profile type: Select Administrative Templates (Preview);
4 On the <Name> blade, select Settings to open the <Name> – Settings blade;
5 On the <Name> – Settings blade, type Updates in the Search to filter items… field to filter the available settings to only update related settings and select Update Channel (as shown below) to open the Update Channel blade.
OfficeUpdates-Settings
6

OfficeUpdates-UpdateChannelOn the Update Channel blade, select Enabled to enable the setting, select the required update channel with Channel Name and click OK.

Note: Keep in mind that enabling a setting and clicking OK will directly save the change to the created device configuration profile. This is a similar experience to how changes are managed when working with normal group policies.

Note: In my device configuration profile I’ve also configured Enable Automatic Updates and Hide option to enable or disable updates to make sure that Office automatically checks for updates without an option for the user to disable Office updates.

Result

Now it’s really interesting to look at the result of the created configuration. For that, let’s first have a look at the registry. Below on the left is an overview of the registry key of the policy manager that contains the created Office configuration. It clearly shows the settings that should be configured, including the update branch. The update branch contains the ADMX-setting value of Current, which was shown in table above, and matches my configured value, in Microsoft Intune, of Monthly Channel. Below on the right is an overview of the registry key of the policy manager that contains the ingested Office ADMX.

OfficeUpdates-Registry01 OfficeUpdates-Registry02

Another interesting location is the standard location in the registry that contains policy settings. Below on the left is an overview of the configured update branch. The update branch also contains the ADMX-setting value of Current, which was shown in table above, and matches my configured value, in Microsoft Intune, of Monthly Channel. Below on the right is the actual configuration of an Office app shown. That clearly shows the Monthly Channel configuration.

OfficeUpdates-Registry03 OfficeUpdates-Outlook01

Windows Insider MVP 2019!

Yeah! I just received a great email stating that I’m awarded the Windows Insider MVP! What a great way to start the new year! An unexpected, but really great start of the new year! Just awesome! I feel really honored and privileged to be awarded my first Windows Insider MVP award and to already been holding the Microsoft MVP (Enterprise Mobility) award for four years! Just awesome!

WIMVP2019

Of course none of this would be possible without the support of my great family I love them and couldn’t do this without their support! Just awesome! Ready for another great year! 

Offline Windows Autopilot deployment profile

This week is all about Windows Autopilot. More specifically, about offline Windows Autopilot deployment profiles. The use case for an offline Windows Autopilot deployment profile is simple, a migration from Windows 7 to Windows 10 for existing devices. It enables organizations to reimage devices for one last time and provide those devices with an offline Windows Autopilot deployment profile. That will make sure that those devices will contact the Windows Autopilot deployment service, without first being registered. In this post I’ll look at getting the offline Windows Autopilot deployment profile, followed by a look at the explanation of the attributes in the offline Windows Autopilot deployment profile. I’ll end this post by looking at the usage of the offline Windows Autopilot deployment profile and a method to group the devices that are deployed via an offline Windows Autopilot deployment profile.

How to get the offline deployment profile

Let’s start by having a look at how to get the offline Windows Autopilot deployment profile. The following five steps walk through the process of downloading the required PowerShell cmdlets, connecting to the correct services and saving the Windows Autopilot deployment profile as a JSON-file.

1 Open a Windows PowerShell command box, as an administrator, on an Internet connected device
2 Install the Azure AD module by using Install-Module AzureAD -Force
3 Install the Windows Autopilot module by using Install-Module WindowsAutopilotIntune -Force
4a Connect to the Intune service by using Connect-AutopilotIntune
4b Provide the user principle name of a user with enough administrative rights and provide the password in the Sign in to your account window
5

Export the Windows Autopilot deployment profile (Get-AutoPilotProfile), convert the deployment profile to JSON-fornat (ConvertTo-AutoPilotConfigurationJSON) and save the output as AutoPilotConfigurationFile.json (Out-File) by using Get-AutoPilotProfile | ConvertTo-AutoPilotConfigurationJSON | Out-File -FilePath $env:userprofile\desktop\AutoPilotConfigurationFile.json -Encoding ASCII

Note: When there are multiple deployment profiles configured in the tenant, there should be an additional filter being used to only export a specific deployment profile.

OWADP-JSON

Explanation of the attributes in the offline deployment profile

The JSON-file contains a few different attributes and it’s good to understand the usage of those attributes. The following table contains the different attributes and a short explanation.

Attribute Explanation
CloudAssignedTenantId This GUID is a required attribute and specifies the GUID of the Azure AD tenant that should be used.
CloudAssignedDeviceName This string is an optional attribute and specifies the naming pattern for devices that should be used.
CloudAssignedForcedEnrollment

This number is a required attribute and specifies if the device should require AAD Join and MDM enrollment. This can be one of the following values:

  • 0 = not required,
  • 1 = required.
Version This number is an optional attribute and specifies the version that identifies the format of the JSON file. For Windows 10, version 1809, the version must be 2049.
Comment_File This string is an optional attribute and specifies a comment that by default contains the name of the profile.
CloudAssignedAadServerData This encoded JSON string is a required attribute and specifies the branding configuration (this requires Azure AD branding to be enabled) that should be used.
CloudAssignedOobeConfig

This number is a required attribute and specifies a bitmap that shows which Autopilot settings should be configured. This can include the following values:

  • SkipCortanaOptIn = 1,
  • OobeUserNotLocalAdmin = 2,
  • SkipExpressSettings = 4,
  • SkipOemRegistration = 8,
  • SkipEula = 16
CloudAssignedDomainJoinMethod This number is a required attribute and specifies the domain join method that should be used. Both hybrid AAD join and AAD join should be set to 0.
ZtdCorrelationId This GUID is a required attribute and specifies a unique GUID that will be provided to Intune as part of the registration process. This GUID can be used to group the devices in a dynamic Azure AD security group.
CloudAssignedTenantDomain This string is a required attribute and specifies the name of the Azure AD tenant that should be used.

How to use the offline deployment profile

The offline Windows Autopilot deployment profile can be used on Windows 10, version 1809, or later. The only other requirements are that the file is named AutoPilotConfigurationFile.json and that the file is available in C:\Windows\Provisioning\Autopilot\. Below are a few example processes that can be used to prepare a device with an offline Windows Autopilot deployment profile.

1 Manual copy the file to the required location and SYSPREP the device,
2 Use a USB-stick to install Windows and in the same process copy the file to the required location and SYSPREP the device.
3 Use MDT to install Windows and in the same process copy the file to the required location and SYSPREP the device.
4 Use Configuration Manager to install Windows and in the same process copy the file to the required location and SYSPREP the device.
5 Use a third-party product to install Windows and in the same process copy the file to the required location and SYSPREP the device.

How to group devices based on the offline deployment profile

The last thing that is good to mention, is that it’s also possible to group devices based on the fact that it was deployment via an offline Windows Autopilot deployment profile. Devices that are enrolled by using an offline Windows Autopilot deployment profile, will have the Azure AD device attribute enrollmentProfileName set to “OfflineAutopilotprofile-<ZtdCorrelationId>”. The ZtdCorrelationId is available in the offline Windows Autopilot deployment profile as shown and mentioned above. That would make a dynamic query for an Azure AD device group like this: (device.enrollmentProfileName -eq “OfflineAutopilotprofile-7F9E6025-1E13-45F3-BF82-A3E8C5B59EAC”).

More information

For more information regarding offline Windows Autopilot profiles, please refer this article about Windows Autopilot for existing devices.

Block access to a device until specific apps are installed

ESP-BlockApps-TweetThis week a short blog post about a recently introduced feature in the Enrollment Status Page (ESP). The ability block access to a device until specific apps are installed. I also tweeted about that feature recently and I thought it would be good to document the use case, the configurations and the end-user experience.

Introduction

Let’s start with a short introduction. The ESP is strongly recommended with Windows Autopilot. The idea of the ESP, is to block the device until the device is ready for usage by the user. This new feature enables an administrator to only block the device until the most important apps are installed for the user. That enables the user to be earlier productive. The administrator simply chooses which apps are tracked on the ESP and until those apps are installed, the user can’t use the device.

With the recent updates to Microsoft Intune, the ESP can track the following apps:

  • Licensed Microsoft Store for Business apps;
  • Line-of-business apps (APPX, MSIX, single-file MSI)
  • Office 365 ProPlus apps

Note; Keep in mind that there are difference between the user context and the system context. For the exact up-to-date details see the links in section More information.

Configuration

Now let’s continue by looking at the available configuration options. The following three steps walk through adjusting the default ESP. Those steps will show which configurations are required to get to the available configuration options for tracking specific apps. Similar steps are applicable when configuring custom ESPs.

1 Open the Azure portal and navigate to Microsoft Intune > Device enrollment > Windows enrollment > Enrollment Status Page (Preview) to open the Enrollment Status Page (Preview) blade;
2 On the Enrollment Status Page (Preview) blade, select Default > Settings to open the All users and all devices – Settings blade;
3a On the All users and all devices – Settings blade, select Yes with Show app and profile installation progress and Yes with Block device use until all apps and profiles are installed to enable the Block device use until these required apps are installed if they are assigned to the user/device setting (see step 3b);
3b When the Block device use until these required apps are installed if they are assigned to the user/device setting is enabled, select Select apps to open the Select apps blade. On the Select apps blade, select the required apps and click Select to return to the All users and all devices – Settings blade and click Save;
ESP-BlockApps-Config

Note: Keep in mind that if the ESP is configured to track Office 365 ProPlus apps, other large apps, or just many apps, it might be required to also increase the timeout as documented in this Support Tip.

End-user experience

Now let’s end this post by looking at the end-user experience. The good thing is that the user will not notice any big differences. The user will still get the same screens and the same experiences. Only users that pay attention to details will notice the small differences. As shown below, the user will see a list of apps that is equal to the number of configured apps by the administrator. That list is most likely shorter then it was before. That’s also the reason why the user might notice that it’s possible to get productive sooner, as the device will be available for use sooner.

ESP-BlockApps-EUE

More information

For more information regarding blocking devices until certain apps are installed, please refer to the following articles:

Conditional access and Outlook on the web for Exchange Online

This week a blog post about conditional access. More specifically, about conditional access and enforced restrictions with Outlook on the web for Exchange Online. This can be used to provide users with access to Outlook on the web, but still protect company data. That can be achieved by configuring a limited experience for users with regards to attachments. The enforced restrictions can enable a read only option for attachments in the browser and can completely block attachments in the browser. In this post I’ll walk through the required configurations, with the focus on conditional access, and I’ll show the end-user experience.

Configuration

Let’s start with looking at the configuration. The main focus in the configuration is conditional access, but as that configuration has no use without configuring the Outlook on the web mailbox policies, I’ll also provide the main configuration options from an Exchange Online perspective.

Exchange Online configuration

The most important and only configuration, from an Exchange Online perspective, is to configure the Outlook on the web mailbox policy. That configuration must be done by using PowerShell. When there is an Outlook on the web mailbox policy, the required cmdlet is Set-OwaMailboxPolicy. That cmdlet contains the parameter ConditionalAccessPolicy. That parameter can be used to specify the Outlook on the web mailbox policy for limited access and can have the following values:

  • Off: This value means that no conditional access policy is applied to Outlook on the web;
  • ReadOnly: This value means that users can’t download attachments to their local computer, and can’t enable offline mode on non-compliant computers;
  • ReadOnlyPlusAttachmentsBlocked: This value means that all restrictions from ReadOnly apply, but that users can’t view attachments in the browser.

Note: In the end-user experience section, I’ll show the experience for both values.

Conditional access configuration

Once the conditional access policy configuration is in place for the Outlook on the web mailbox policy, it’s time to look at the actual conditional access configuration in Azure AD. The following eight steps walk through the steps to create a conditional access policy that will require multi-factor authentication and enforce a restriction on Outlook on the web, for devices that are not hybrid Azure AD joined and that are not compliant.

1 Open the Azure portal and navigate to Microsoft Intune > Conditional access > Policies or to Azure Active Directory > Conditional access > Policies;;
2 On the Policies blade, click New policy to open the New blade;
3

OOTW-UsersGroupsOn the New blade, select the Users and groups assignment to open the Users and groups blade. On the Users and groups blade, select All users and click Done;

Explanation: This configuration will make sure that this conditional access policy is applicable to all users.

4

OOTW-CloudAppsOn the New blade, select the Cloud apps assignment to open the Cloud apps blade. On the Cloud apps blade, select Select apps > Office 365 Exchange Online and click Done;

Explanation: This configuration will make sure that this conditional access policy is applicable to Exchange Online.

5a

OOTW-DevicePlatformsOn the New blade, select the Conditions assignment to open the Conditions blade. On the Conditions blade, select Device platforms to open the Device platforms blade. On the Device platforms blade, click Yes with Configure, select All platforms (including unsupported) and click Done to return to the Conditions blade;

Explanation: This configuration will make sure that this conditional access policy is applicable to all platforms.

5b

OOTW-ClientAppsBack on the Conditions blade, select Client apps (preview) to open the Client apps (preview) blade. On the Client apps (preview) blade, click Yes with Configure, select Browser and click Done to return to the Conditions blade;

Explanation: This configuration will make sure that this conditional access policy is applicable to browser sessions.

5c

OOTW-DeviceStateBack on the Conditions blade, select Device state (preview) to open the Device state (preview) blade. On the Device state (preview) blade, click Yes with Configure, select Device Hybrid Azure AD joined and Device marked as compliant on the Exclude tab and click Done and Done;

Explanation: This configuration will make sure that this conditional access policy is applicable to unmanged devices, by excluding hybrid Azure AD joined and compliant devices (which are both considered managed).

6

OOTW-GrantOn the New blade, select the Grant access control to open the Grant blade. On the Grant blade, select Grant access > Require multi-factor authentication and click Select;

Explanation: This configuration will make sure that this conditional access policy will require multi-factor authentication .

7

OOTW-SessionOn the New blade, select the Session access control to open the Session blade. On the Session blade, select Use app enforced restrictions and click Select;

Explanation: This configuration will make sure that this conditional access policy will enforce the configured restrictions in Outlook on the web for Exchange Online..

8 Open the New blade, select On with Enable policy and click Create;

End-user experience

Let’s end this post by looking at the end-user experience, for both configurable values for the Outlook on the web mailbox policy for limited access. When using an unmanaged device the user must user multi-factor authentication, which will be followed by the experiences showed below.

The first value is the ReadOnly value, which forces read only restrictions to any email attachment. Besides that it also prevents users from saving the attachments locally, as it only allows the user to save the attachments to OneDrive. Below is an example of that behavior. It also shows on top of the mail that the user is notified about the limited experience.

OutlookOTW-ReadOnly

The second value is the ReadOnlyPlusAttachmentsBlocked value, which forces email attachments to be blocked from being opened via Outlook on the web. Basically it prevents any interaction with the attachment. Below is an example of that behavior. It also shows on top of the mail that the user is notified about the limited experience.

OutlookOTW-ReadOnlyPlusAttachmentsBlocked

Note: This behavior does require disciplined users, as these type of limitations in the user experience might trigger users to forward messages to another account.

More information

For more information about conditional access in combination with Outlook on the web for Exchange Online, please refer to the following articles:

Quick tip: Intune Diagnostics for App Protection Policies via about:intunehelp

This week a relatively short blog post about a feature that already exists for a long time, but that is not that known. That feature is the Intune Diagnostics for App Protection Policies (APP). The Intune Diagnostics can be really useful with troubleshooting APP. Especially when looking at APP for apps on unmanaged devices.  The Intune Diagnostics provides information about the device, provides the ability to collect logs and provides the ability to look at the applied APP for the different apps. The Intune Diagnostics can be accessed on iOS devices, by using the Intune Managed Browser or by using Microsoft Edge. In this post I’ll only look at the experience when with the Intune Diagnostics.

The experience

Let’s start at the beginning, which is to get to the Intune Diagnostics. This can be achieved by opening the Intune Managed Browser or Microsoft Edge and simply type about:intunehelp as the address. That will open the Intune Diagnostics page, as shown below. The Intune Diagnostics page contains two sections, 1) the Collect Intune Diagnostics section and 2) the Shared Device Information section. The first section can be used to collect logs of all Microsoft Intune managed apps and the second section provides information about the device and the managed apps.

IMG_0155

When clicking on the Get Started link in the Collect Intune Diagnostics section, it will open the Collect Intune Diagnostics page, as shown below. The Collect Intune Diagnostics page can be used to actually share the Microsoft Intune managed apps logs with an administrator (or with Microsoft), by simply clicking on the Share Logs link.

IMG_0156

When clicking View Intune App Status link in the Shared Device Information section, it will open the Intune App Status page, as shown below. The Intune App Status page can be used to actually look at the info about the installed managed apps. By selecting an app in the top of the page, it will show the currently applied policy (including information regarding the app version and the policy check-in). This can be really useful with for example verifying if the latest APP is applied.

IMG_0157

For simplifying the end-user experience, an app configuration policy can be used for the Intune Managed Browser and Microsoft Edge to add a bookmark. That can be achieved by using the following information:

  • key: com.microsoft.intune.mam.managedbrowser.bookmarks
  • value: Intune Diagnostic|about:intunehelp

More information

For more information about the Intune Diagnostics page, please refer to the following articles:

Hybrid Azure AD join with Windows Autopilot

This week is all about a very often requested feature, which is the ability to hybrid Azure AD join a device when using Windows Autopilot. The combination of the latest updates to Microsoft Intune with Windows 10, version 1809, provides just that! The ability to hybrid Azure AD join a device when using Windows Autopilot! In other words, the device will join the on-premises Active Directory and register in Azure Active Directory. In this blog post I’ll start with a short introduction about the hybrid Azure AD join with Windows Autopilot, followed by the most important configurations. I’ll end this post by looking at the experience.

Introduction

Let’s start with a little introduction about the hybrid Azure AD join through Windows Autopilot. A short summary would be that Intune uses an on-premises connector to create an offline domain join (ODJ) blob for the device that will be provided to the device during enrollment. Now lets go through the high-level Autopilot flow for this scenario and see how that fits.

  • The hardware ID of the device is registered with the Windows Autopilot service;
  • The device is sent to the employee and the employee unboxes the device and turns it on;
  • The device connects to the Windows Autopilot service;
  • The Windows Autopilot service delivers the Autopilot profile to the device;
  • The device performs a MDM-enrollment with Microsoft Intune;
  • Microsoft Intune will use the on-premises connector to generate a machine object in Active Directory, which will generate an ODJ blob;
  • The connector sends the ODJ blob to Microsoft Intune;
  • Microsoft Intune sends the ODJ blob to the device;
  • The MDM-enrollment is completed;
  • The user logs on to the device to complete the domain join;
  • The device receives any targeted group policies;

Configuration

Now let’s continue by looking at the configurations that are required to enable the hybrid Azure AD join scenario via Windows Autopilot. I’ll do that by going through the new Intune-related configurations. That means, I’ll show how to install the Intune connector, I’ll show how to configure the Autopilot deployment profile and I’ll show how to configure the domain join profile.

Requirements

Before looking at the configurations, let’s start with a few important requirements and limitations:

  • The hybrid Azure AD join environment configurations must be in place;
  • The device must run Windows 10, version 1809 or later;
  • The device must have Internet access;
  • The device must have direct access to Active Directory;
  • Automatic enrollment must be configured (Azure AD > Mobility (MDM and MAM));
  • The server hosting the Intune connector must have delegated permissions to create computer accounts in the specified OU;
  • The server hosting the Intune connector must be Windows Server 2016, or later;
  • The server hosting the Intune connector must have Internet connectivity;

Intune connector

The first configuration that should be in place is the installation of the Intune connector. Multiple connectors can be installed to increase scale and availability (or even to support multiple Active Directory domains). The following nine steps walk through the steps to install the Intune connector.

1 Open the Azure portal and navigate to Microsoft Intune > Device enrollment > Windows enrollment to open the Device enrollment – Windows enrollment blade;
2 On the Device enrollment – Windows enrollment blade, select Intune Connector for Active Directory (Preview) to open the Intune Connector for Active Directory (Preview) blade;
3 On the Intune Connector for Active Directory (Preview) blade, select Add connector to open the Add connector blade;
4 On the Add connector blade, click the Download the on-premises Intune Connector for Active Directory to download the connector for Active Directory (ODJConnectorBootstrapper.exe);
5 On the server that should be running the Intune connector for Active Directory, run ODJConnectorBootstrapper.exe;
6 On the Intune Connector for Active Directory Setup dialog box, select I agree to license terms and conditions and click Install;
7 On the Intune Connector for Active Directory Setup dialog box, after the installation completed, select Configure Now ;
8 On the Intune connector for Active Directory dialog box, select Sign In to sign in with a global administrator account to enroll the connector in the tenant and close the dialog box;
9 Back on the Intune Connector for Active Directory (Preview) blade, it should now show an entry for the added connector with the name of the server that is running the connector;
ICforAD

Note: At this moment, make sure that a language pack is installed and configured as described in the Intune Connector (preview) language requirements.

Autopilot deployment profile

The second configuration that should be in place is the Windows Autopilot deployment profile. The following four steps walk through the steps to create the deployment profile. That deployment profile can be assigned to an Azure AD group that contains the required Autopilot devices.

1 Open the Azure portal and navigate to Microsoft Intune > Device enrollment > Windows enrollment to open the Device enrollment – Windows enrollment blade;
2 On the Device enrollment – Windows enrollment blade, select Deployment Profiles in the Windows Autopilot Deployment Program section to open the Windows Autopilot deployment profiles blade;
3 On Windows Autopilot deployment profiles blade, select Create profile to open the Create profile blade;
4a WADP-HAADJOn the Create profile blade, provide the following information and click Create;

  • Name: Provide a unique name for the Windows Autopilot deployment profile;
  • Description: (Optional) Provide a description for the Windows Autopilot deployment profile;
  • Convert all targeted devices to Autopilot: Select Yes to automatically convert Intune managed devices to Autopilot;
  • Deployment mode: Select User-Driven, as that deployment mode provides the functionality that is needed for this post;
  • Join to Azure AD as: Select Hybrid Azure AD joined (Preview), as that will trigger the on-premises domain join with device registration in Azure AD;
  • Out-of-box experience (OOBE): See 4b

Note: The hybrid Azure AD join is only available for user driven deployments.

4b

On the Out-of-box experience (OOBE) blade, provide the following information and click Save.

  • End user license agreement (EULA): Select Hide to hide the EULA during the Windows Autopilot hybrid Azure AD join experience;

  • Privacy Settings: Select Hide to the hide the privacy settings during the Windows Autopilot hybrid Azure AD join experience;
  • Hide change account options: Select Hide to hide the change account options during the Windows Autopilot hybrid Azure AD join experience;
  • User account type: Select Standard to only make any user on the device a standard user;
  • Apply computer name template (Windows Insider Only): Not applicable, as the computer name standard is defined in the Domain Join profile (see next section);
WADP-HAADJ-OOBE

Domain Join profile

The third configuration that should be in place is the domain join profile. The following four steps walk through the steps to create the domain join profile. That domain join profile can be assigned to an Azure AD group that contains the required Autopilot devices.

1 Open the Azure portal and navigate to Microsoft Intune > Device configuration > Profiles to open the Device configuration – Profiles blade;
2 On the Device configuration – Profiles blade, select Create profile to open the Create profile blade;
3a On the Create profile blade, provide the following information and click Create;

  • Name: Provide a unique name for the domain join profile;
  • Description: (Optional) Provide a description for the domain join profile;
  • Platform: Select Windows 10 and later;
  • Profile type: Select Domain Join (Preview);
  • Settings: See 3b;
3b On the Domain Join (Preview) blade, provide the following information and click OK;

  • Computer name prefix: Provide a computer name prefix. The remaining characters of the 15 characters of a computer name will be random;
  • Domain name: Provide the domain name that the device will join;
  • Organizational unit: (Optional) Provide the OU that the computer account is created in;
WADP-HAADJ-DJP

Note: When no OU is specified, the well known computer object container is used.

End-user experience

Let’s end this post by looking at the end-user experience. The beginning of the out-of-box-experience (OOBE) is similar to any other Windows Autopilot deployment. The difference is happening in the background, as explained during the introduction, and can be noticed during the Network configuration. The configuration will take longer than with a Azure AD join. Another thing that an administrator might notice is that the device will be available within Intune before it’s available within the Active Directory. That makes perfect sense as the domain join profile must come via Microsoft Intune.

WADP-HAADJ-CORP

Note: From an administrator perspective the Event Viewer, on the server running the connector, will show Event ID 30140 in the log ODJ Connector Service from the source ODJ Connector Service Source, with a successful creation of the computer object.

More information

For more information regarding Windows Autopilot and hybrid Azure AD join, please refer to the following articles:

Require an Internet connection during device setup

This week I’m going to look at a well hidden configuration option that is recently introduced and can be really useful in specific scenarios. That configuration option is to require an Internet connection during the device setup. Requiring an Internet connection during device setup can be useful when trying to prevent users from resetting the device (either accidently or on purpose) and configuring it without an Internet connection, as configuring a device without Internet connectivity would enable a user to configure the device with a local user and without enrollment. In this blog post, I’ll start with a short introduction about why this configuration option would be useful and what the options are with this configuration option. Followed by the configuration steps and the end-user experience.

Introduction

Configuring a device without Internet connectivity would enable a user to configure the device with a local user and without an enrollment to Microsoft Intune (and Azure AD). That’s often what organizations want to prevent, as it disconnects a device from the organization. Minor detail, this configuration option must be configured once. Of course it would be great if this configuration option could be a Windows default, or available via the Windows Autopilot configuration. However, to my understanding this is currently not possible due to legal requirements. At this moment it’s simply legally not allowed to require an Internet connection on a device during the initial setup. Having said that, as this setting is configured via the TenantLockdown CSP, I can imagine that, in a Windows Autopilot for existing devices scenario, this can be configured as a Windows default, via PowerShell, by using the WMI Bridge Provider.

Configuration

Before looking at the configuration, let’s start with a few important requirements and limitations:

  • The device must run Windows 10, version 1809 or later;
  • The device must be configured once before the setting is applicable;

Now let’s continue by looking at the required configuration. The following four steps walk through the steps to get create a new device configuration profile and the specific configuration option. That device configuration profile can be assigned to an Azure AD group.

1 Open the Azure portal and navigate to Microsoft Intune > Device configuration > Profiles to open the Device configuration – Profiles blade;
2 On the Device configuration – Profiles blade, select Create profile to open the Create profile blade;
3a On the Create profile blade, provide the following information and click Create;

  • Name: Provide a unique name for the device configuration profile;
  • Description: (Optional) Provide a description for the device configuration profile;
  • Platform: Select Windows 10 and later;
  • Profile type: Select Device restrictions;
  • Settings: See 3b;
3b On the Device restrictions blade, select General to open the General blade. On the General blade, select Require with Require users to connect to network during device setup and click OK to return to the Device restrictions blade. On the Device restrictions blade, click OK;
OOBE-Configure-Network

Note: This setting must be configured before it’s applicable. In other words, it’s not applicable during the initial out-of-box experience.

End-user experience

Let’s end this post by looking at the end-user experience. Once the configuration is in place and a reset is performed on the device, there will be an additional check during the device setup. When the device is not connected to the Internet, the end-user will receive a message as shown below. It requires the user to connect to the Internet. The user will not be able to continue without that connection. Once the user is connected to the Internet, the page below will show a Next button that can be used to continue with the device setup.

OOBE-Connect-Network

More information

For more information regarding the device configuration options and the TenantLockdown CSP, please refer to the following articles:

Windows Autopilot self-deploying mode

This week a new blog post about Windows Autopilot. More specifically, Windows Autopilot self-deploying mode. Autopilot self-deploying mode is really useful for devices that are function specific, like for example kiosk devices. The biggest benefit is that a device with a wired network connection (with Internet) can be completely configured without any user interaction. Simply connect the device to the wired network and power it on! Real zero touch provisioning! In this post I’ll provide the configuration steps to create that experience, followed by some known errors and the end-user experience.

Configuration

Let’s start with a few important requirements and limitations:

  • The device must run Windows 10, version 1809 or later;
  • The device can only be Azure AD joined (Active Directory join is not supported);
  • The device must be a physical device with TPM 2.0 (virtual machine is not supported);

Now let’s continue by looking at the available configuration options. In this case I’ll look at the different available configurations options and the related impact of those configuration options. The following four steps walk through the steps to get create a new Windows Autopilot self-deploying profile (including the available settings). That deployment profile can be assigned to an Azure AD group that contains devices.

1 Open the Azure portal and navigate to Microsoft Intune > Device enrollment > Windows enrollment to open the Device enrollment – Windows enrollment blade;
2 On the Device enrollment – Windows enrollment blade, select Deployment Profiles in the Windows Autopilot Deployment Program section to open the Windows Autopilot deployment profiles blade;
3 On Windows Autopilot deployment profiles blade, select Create profile to open the Create profile blade;
4a

WA-SD-CreateProfileOn the Create profile blade, provide the following information and click Create;

  • Name: Provide a unique name for the Windows Autopilot deployment profile;
  • Description: (Optional) Provide a description for the Windows Autopilot deployment profile;
  • Convert all targeted devices to Autopilot: Select Yes to automatically convert Intune managed devices to Autopilot;
  • Deployment mode: Select Self-Deploying (preview), as that deployment mode provides the functionality that is needed for this post;
  • Join to Azure AD as: Azure AD joined is selected by default and grayed-out, as it’s the only configuration option supported for Windows Autopilot self-deploying devices;
  • Out-of-box experience (OOBE): See 4b.

Note: The Self-Deploying (preview) deployment mode, defines the available Azure AD settings and the available out-of-box experience (OOBE) settings.

4b

On the Out-of-box experience (OOBE) blade, provide the following information and click Save.

  • Language (Region): Select the Language that should be automatically configured during the Windows Autopilot self-deploying experience. This configuration will only be performed when the device is on a wired network connection (with Internet);
  • Automatically configure keyboard: Select Yes to automatically configure the keyboard based on the selected Language. This setting is only available when a Language is configured and this configuration will only be performed when the device is on a wired network connection (with Internet);
  • End user license agreement (EULA): Select Hide to hide the EULA during the Windows Autopilot self-deploying experience;
  • Privacy Settings: Select Hide to the hide the privacy settings during the Windows Autopilot self-deploying experience;
  • Hide change account options: Select Hide to hide the change account options during the Windows Autopilot self-deploying experience;
  • User account type: Select Standard to only make any user on the device a standard user. With the exception of global administrators and company administrators;
  • Apply computer name template (Windows Insider Only): Create a computer name, according to the configured template, for devices at initial startup;
WA-SD-OOBE

Note: The Autopilot settings can only be downloaded when a network connection is in place. That’s the reason why a wired network connection should be in place. When a wired network connection is not available, it’s required to configure the region, the keyboard and a Wi-Fi.

Known errors

During the testing of Windows Autopilot self-deploying, I ran into multiple errors. More information about an error can always be found in the Event Viewer, at Application and Services Logs > Microsoft > Windows > Provisioning-Diagnostics-Provider > AutoPilot (thank you for the reminder Sandy!). The errors that I’ve seen on screen are documented and explained in the table below. If you’ve seen errors that are not on this list, let me know and I’ll add them.


Error Description
0x800705B4 This error means that the device is either a virtual machine, or does not have TPM 2.0, and is not capable of running Autopilot self-deploying.
0x801c03ea This error means that the device is TPM 2.0 capable, but that the TPM still needs to be upgraded from 1.2 to 2.0.
0xc1036501 This error means that the device cannot do an automatic MDM enrollment, because there are multiple MDM configurations in Azure AD.

End-user experience

As always, let’s end this post by having a look at the end-user experience. The end-user experience will provide a welcome message (see below) after receiving the Autopilot deployment profile and an automatic restart. An easy differentiation between the Autopilot user-driven experience and the Autopilot self-deploying experience, besides the interaction, is the logo that’s used. At this moment the Autopilot user-driven experience uses the square logo of the Azure AD company branding and the Autopilot self-deploying experience uses the banner logo of the Azure AD company branding.

20181104_165048

Note: From and administrator perspective, an Autopilot self-deploying device can be easily recognized by the Management name of the device. It contains a GUID instead of a username.

More information

For more information about enrolling Windows devices by using Windows Autopilot self-deploying mode, please refer to the documentation named Windows Autopilot Self-Deploying mode.